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Experiments and Results

• Eval Metric: (i) Average return per episode; (ii) Accuracy on 
training environments; (iii) Accuracy on test environments

• We outperformed baselines in sample efficiency, especially 
when task or environment complexity increases. 

Methods (Biased Action)

• Compute set 𝒬goal 𝑞!
"  that is one-hop 

reachable from 𝑞!"  and closer to accepting DRA 
states ℱ, and collect a set 𝒳goal 𝑄!

"  of ‘goal’ 
MDP states and randomly select one as 𝑥goal 

•  A biased action can drive closer to goal state

• Train a NN model 𝐠 to compute the biased 
action prior to RL training

• How to Collect Training Dataset:

• (i) Environment discretization (into grids) with 
goal states placed at center of each cell

• (ii) Randomly sample a set 𝒳start,  assign each 
state to the nearest discrete cell 𝑖

• (iii) Compute weighted Dijkstra distances to all 
goal cells, simulate 𝑍 times each for each action 
and compute the optimal action 𝑎# to reach goal

• (iv) Collect a dataset of 𝑥start, 𝑥goal, 𝑎#  

Training (Left) and Test (Right) Gazebo Envs

Methods

• Translate 𝜙 into DRA 𝔇 =
𝒬𝔇, 𝑞!% , Σ, δ! , ℱ  with the set of 

accepting states ℱ, and compute 
product MDP 𝔓 = 𝔐×𝔇

• For generalization, we leverage 
features related to agent state 
(e.g., distances to obstacles)

• Our DQN algorithm ( 𝝐, 𝜹 -greedy) 
produces a policy µ∗ for the PMDP 
𝔓; Projection of µ∗ onto MDP 𝔐 
yields ξ∗ (Problem 1)

Contribution

• Propose a new DQN algorithm 
for agents with unknown MDPs , 
continuous state spaces and 
LTL-encoded tasks 

• Our policy is complementary 
with existing deep temporal-
difference methods for LTL tasks 
to enhance sample efficiency

• Present comparative numerical 
and hardware experiments that 
demonstrate the sample 
efficiency of our method

• Linear Temporal Logic (LTL) has 
been used to encode complex 
tasks (e.g., navigation task with 
several ordered ROIs)

• Model-free DRL methods 
require a product state space 
that grows exponentially, result 
in slow learning process 

• Model-based RL methods rely 
on learned MDPs but are limited 
to discrete state spaces

Motivation

• Environment 𝒲 ⊆ 𝑅' , 𝑑 ∈ {2,3}

• LTL over set of 𝒜𝒫: ϕ =
𝑡𝑟𝑢𝑒 	π	 ϕ( ∧ 𝜙)|	¬ϕ| ∘ ϕ|ϕ(U	ϕ) 

• Fully observable MDP: 𝔐 =
𝒳,𝒜, 𝑃,𝒜𝒫  with continuous state 

space 𝑥 ∈ 𝒳 and a finite set of 
actions 𝑎 ∈ 𝒜 (transition 
probabilities unknown)

• Problem 1: Given a known LTL-
encoded task specification ϕ, 
develop a sample-efficient DRL 
method that can synthesize a finite 
memory control policy ξ∗ for the 
unknown MDP that maximizes 
satisfaction probability of ϕ

Problem Formulation

Goal

Design a sample-efficient DRL 
algorithm to learn control policies 
for agents with LTL-encoded tasks

Experiments

• Unknown robot dynamics with states 𝑥" =
[𝑝"(, 𝑝"), 𝜃"] with 𝒜 = 23 actions of (𝑢, 𝜔), and 
additive Gaussian actuation noise 

• Baselines: 𝜖-greedy DQN | PPO | SAC

Ours (Blue), DQN (Orange), PPO(Green), SAC(Red) 
Columns 1 ~ 3 plot metrics (i), (ii), and (iii), respectively.
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