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Problem Formulation Methods (Biased Action)

® Linear Temporal Logic (LTL) has
been used to encode complex
tasks (e.g., navigation task with
several ordered ROIs)

Buchi] I
 agbad&l — START L'l L
— bale N
" a&badale _ Ly \ -
- o A \
2 — bad&le w1 | \ &
nabsdgle 7  b&ld&e B b = ~b&te ;: _|_
A AER o e '}
";kI"as'bsrdsst ';",«" o Ab,&,dsg!e'_r:g _ l <
" S~ g ,L __b&ld&le d&te Ma—
T _a&b&M&le T~ a&e 7/
\ — NG )
Na&b&!date PP of
z =
N sl T oSN/ = == GOAL
~ = - akd&le
. Y

LTL Mission Environment

-

I_

-
O
.
@)
<
v
Interpreter

Agent
® Model-free DRL methods
require a product state space
that grows exponentially, result
In slow learning process

® Model-based RL methods rely
on learned MDPs but are limited
to discrete state spaces
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Environment W ¢ R%,d € {2,3}

LTL over set of AP: ¢ =
true | [Py A 2| 2P| o [P, U b,

Fully observable MDP: It =

(X, A, P,AP) with continuous state
space x € X and a finite set of
actions a € A (transition
probabilities unknown)

Problem 1. Given a known LTL-
encoded task specification ¢,
develop a sample-efficient DRL
method that can synthesize a finite
memory control policy &* for the
unknown MDP that maximizes
satisfaction probability of ¢

Design a sample-efficient DRL
algorithm to learn control policies
for agents with LTL-encoded tasks

Contribution

* Propose a new DQN algorithm
for agents with unknown MDPs ,
continuous state spaces and
LTL-encoded tasks

* Qur policy is complementary
with existing deep temporal-
difference methods for LTL tasks
to enhance sample efficiency

* Present comparative numerical
and hardware experiments that
demonstrate the sample
efficiency of our method

Translate ¢ into DRAD =
(9o, 93,2, 85, F) with the set of

accepting states F, and compute
product MDP ¢ = ItxD

For generalization, we leverage
features related to agent state
(e.g., distances to obstacles)

Our DQN algorithm ((€, §)-greedy)
produces a policy pu* for the PMDP
‘B; Projection of u* onto MDP 9t
yields € (Problem 1)

[(e, 8)-greedy poIich

1—¢€ € =6p+ 6,
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Greedy action

= argmax Q(s,a)
Y, \ Y,

Exploratory Action

Contact Email: junw@wustl.edu
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Compute set nga|(qf)) that is one-hop

reachable from g% and closer to accepting DRA
states F, and collect a set XgoaI(Qlt)) of ‘goal’

MDP states and randomly select one as Xgoal

A biased action can drive closer to goal state

Train a NN model g to compute the biased
action prior to RL training
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: g ] AB;?sed
xgoal ction q,

How to Collect Training Dataset:

(i) Environment discretization (into grids) with
goal states placed at center of each cell

(i) Randomly sample a set Xgi4t, assign each
state to the nearest discrete cell i

(i) Compute weighted Dijkstra distances to all
goal cells, simulate Z times each for each action
and compute the optimal action a;, to reach goal

(iv) Collect a dataset of (xstart» Xgoal’ ab)

Unknown robot dynamics with states x, =
[pi,p?,0,] with |A| = 23 actions of (u, w), and
additive Gaussian actuation noise

Baselines: e-greedy DQN | PPO | SAC
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Experiments and Results

Eval Metric: (i) Average return per episode; (ii) Accuracy on
training environments; (iii) Accuracy on test environments

We outperformed baselines in sample efficiency, especially
when task or environment complexity increases.
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(a) Case Study I-(1) (b) Case Study I-(i1) (c) Case Study I-(iii)
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(d) Case Study II-(i) (e) Case Study II-(ii) (f) Case Study II-(iii)
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(g) Case Study III-(i) (h) Case Study III-(i1) (1) Case Study III-(iii)

Ours (Blue), DQN ( ), PPO(Green), SAC(Red)
Columns 1 ~ 3 plot metrics (i), (ii), and (iii), respectively.
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Hardware Environment (Left) and Turtlebot Waffle Pi(Right)




